What ears do for bats: a comparative study of pinna sound pressure transformation in chiroptera.

نویسندگان

  • M K Obrist
  • M B Fenton
  • J L Eger
  • P A Schlegel
چکیده

Using a moveable loudspeaker and an implanted microphone, we studied the sound pressure transformation of the external ears of 47 species of bats from 13 families. We compared pinna gain, directionality of hearing and interaural intensity differences (IID) in echolocating and non-echolocating bats, in species using different echolocation strategies and in species that depend upon prey-generated sounds to locate their targets. In the Pteropodidae, two echolocating species had slightly higher directionality than a non-echolocating species. The ears of phyllostomid and vespertilionid species showed moderate directionality. In the Mormoopidae, the ear directionality of Pteronotus parnellii clearly matched the dominant spectral component of its echolocation calls, unlike the situation in three other species. Species in the Emballonuridae, Molossidae, Rhinopomatidae and two vespertilionids that use narrow-band search-phase echolocation calls showed increasingly sharp tuning of the pinna to the main frequency of their signals. Similar tuning was most evident in Hipposideridae and Rhinolophidae, species specialized for flutter detection via Doppler-shifted echoes of high-duty-cycle narrow-band signals. The large pinnae of bats that use prey-generated sounds to find their targets supply high sound pressure gain at lower frequencies. Increasing domination of a narrow spectral band in echolocation is reflected in the passive acoustic properties of the external ears (sharper directionality). The importance of IIDs for lateralization and horizontal localization is discussed by comparing the behavioural directional performance of bats with their bioacoustical features.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The bat head-related transfer function reveals binaural cues for sound localization in azimuth and elevation.

Directional properties of the sound transformation at the ear of four intact echolocating bats, Eptesicus fuscus, were investigated via measurements of the head-related transfer function (HRTF). Contributions of external ear structures to directional features of the transfer functions were examined by remeasuring the HRTF in the absence of the pinna and tragus. The investigation mainly focused ...

متن کامل

Hearing and hunting in red bats (Lasiurus borealis, Vespertilionidae): audiogram and ear properties.

We examined aspects of hearing in the red bat (Lasiurus borealis) related to its use of biosonar. Evoked potential audiograms, obtained from volume-conducted auditory brainstem responses, were obtained in two bats, and the sound pressure transformation of the pinna was measured in three specimens. Field-recorded echolocation signals were analysed for comparison. The fundamental sonar search cal...

متن کامل

Hearing in a megachiropteran fruit bat (Rousettus aegyptiacus).

The Egyptian fruit bat (Rousettus aegyptiacus) is one of the few megachiropteran bats capable of echolocation. However, it uses rudimentary tongue clicks rather than laryngeally produced echo calls. We determined the audiogram of 2 bats using a conditioned avoidance procedure with fruit puree reward. At an intensity of 60 dB sound pressure level, the bats' hearing extended from 2.25 kHz to 64 k...

متن کامل

One tone, two ears, three dimensions: a robotic investigation of pinnae movements used by rhinolophid and hipposiderid bats.

Bats, which echolocate using broadband calls, are believed to employ the passive acoustic filtering properties of the head and pinnae to provide spectral cues which encode 3-D target angle. Microchiropteran species whose calls consist of a single, constant frequency harmonic (i.e., some species in the families Rhinolophidae and Hipposideridae) may create additional acoustic localization cues vi...

متن کامل

Artificial Ears for a Biomimetic Sonarhead: From Multiple Reflectors to Surfaces

This work presents an evolutionary approach to pinna design. Narrowband echolocating bats move the pinna to alter the directional sensitivity of their perceptual systems. Adding pinnae to RoBat--a biomimetic sonarhead mounted on a mobile robot--is the goal of this work. After a description of the earlier work on artificial pinnae consisting of multiple reflectors around the transducer, an acous...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 180  شماره 

صفحات  -

تاریخ انتشار 1993